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Abstract 

In a quantum mechanical treatment of gauge theories (including general relativity), one is led to 
consider a certain completion A$ of the space Al4 of gauge equivalent connections. This space 
serves as the quantum configuration space, or, as the space of all Euclidean histories over which one 
must integrate in the quantum theory. m is a very large space and serves as a “universal home” for 
measures in theories in which the Wilson loop observables are well defined. In this paper, Alg is 
considered as the projective limit of a projective family of compact Hausdorff manifolds, labelled 
by graphs (which can be regarded as “floating lattices” in the physics terminology). Using this 
characterization, differential geometry is developed through algebraic methods. In particular, we 
are able to introduce the following notions on w: differential forms, exterior derivatives, volume 
forms, vector fields and Lie brackets between them, divergence of a vector field with respect to 
a volume form, Laplacians and associated heat kernels and heat kernel measures. Thus, although 
m is very large, it is small enough to be mathematically interesting and physically useful. A key 
feature of this approach is that it does not require a background metric. The geometrical framework 
is therefore well suited for diffeomorphism invariant theories such as quantum general relativity. 
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1. Introduction 

Theories of connections are playing an increasingly important role in the current de- 
scription of all fundamental interactions of Nature (including gravity [ 11). They are also of 
interest from a purely mathematical viewpoint. In particular, many of me recent advances 
in the understanding of the topology of low-dimensional manifolds have come from these 
theories. 

In the standard functional analytic approach, developed in the context of the Yang- 
Mills theory, one equips the space of connections with the structure of a Hilbert-Riemann 
manifold (see, e.g., [ 121). This structure is gauge-invariant. However, the construction uses 
a fixed Riemannian metric on the underlying space-time manifold. For diffeomorphism 
invariant theories - such as general relativity - this is, unfortunately, a serious drawback. A 
second limitation of this approach comes from the fact that, so far, it has led to relatively 
few examples of interesting, gauge-invariant measures on spaces of connections, and none 
that is diffeomorphism invariant. Hence, to deal with theories such as quantum general 
relativity, a gauge and diffeomorphism invariant extension of these standard techniques is 
needed. 

For the functional integration part of the theory, such an extension was carried out in a 
series of papers over the past two years [4,5,13,14,21,6]. (For earlier work with the same 
philosophy, see [ 161.) The purpose of this article is to develop differential geometry along 
the same lines. Our constructions will be generally motivated by certain heuristic results in 
a nonperturbative approach quantum gravity based on connections, loops and holonomies 
[2,22]. Reciprocally, our results will be useful in making this approach rigorous [9,3] in 
that they provide the well-defined measures and differential operators that are needed in a 
rigorous treatment. There is thus a synergetic exchange of ideas and techniques between 
the heuristic and rigorous treatments. 

As background material, we will first present some physical considerations and then 
discuss our approach from a mathematical perspective. 

Fix an n-dimensional manifold M and consider the space A of smooth connections on 
a given principal bundle B(h4, G) over M. Following the standard terminology, we will 
refer to G as the structure group and denote the space of smooth vertical automorphisms 
of B(M, G) by Q. This 6 is the group of local gauge transformations. If M is taken to 
be a Cauchy surface in a Lorentzian space-time, the quotient d/G serves as the physical 
configuration space of the classical gauge theory. If M represents the Euclidean space- 
time, d/G is the space of physically distinct classical histories. Because of the presence 
of an infinite number of degrees of freedom, to go over to quantum field theory, one has 
to enlarge d/6 appropriately. Unfortunately, since d/G is nonlinear, with complicated 
topology, a canonical mathematical extension is not available. For example, the simple idea 
of substituting the smooth connections and gauge transformations in d/8 by distributional 
ones does not work because the space of distributional connections does not support the 
action of distributional local gauge transformations. 

Recently, one such extension was introduced [4] using the basic representation theory 
of C-algebras. The ideas underlying this approach can be summarized as follows. One 
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first considers the space l-Id of functions on d/Q obtained by taking finite complex linear 
combinations of finite products of Wilson loop functions W,(A) around closed loops cr. 
(Recall that the Wilson loop functions are traces of holonomies of connections around 
closed loops; W,(A) = Tr P & A dl. Since they are gauge-invariant, they project down 
unambiguously to d/E.) 7-1d can then be completed in a natural fashion to obtain a C*- 
algebra 3id. This is the algebra of configuration observables. Hence, to obtain the Hilbert 
space of physical states, one has to select an appropriate representation of 'HA. It turns out 
that every cyclic representation of ‘HA by operators on a Hilbert space is of a specific type 
[4]: The Hilbert space is simply L2(d/9, p) for some regular, Bore1 measure ,u on a certain 
completion d/6 of d/E and, as one might expect of configuration operators, the Wilson 
loop operators act just by multiplication. Therefore, the space d/G is a candidate for the 
required extension of the classical configuration. To define physically interesting operators, 
one needs to develop differential geometry on d/G. For example, the momentum operators 
would correspond to suitable vector fields on d/Q and the kinetic term in the Hamiltonian 
would be given by a Laplacian. The problem of introducing these operators is coupled to 
that of finding suitable measures on d/Q because these operators have to be essentially 
self-adjoint on the underlying Hilbert space. 

From a mathematical perspective, d/Q is just the Gel’fand spectrum of the Abelian C- 
algebra 'HA; it is a compact, Hausdorff topological space and, as the notation suggests, d/G 
is densely embedded in it. The basic techniques for exploring the structure of this space were 
introduced in [5]. It was shown that d/G is very large: in particular, every connection on 
every G-bundle over M defines a point in d/Q. (Note incidentally that this implies that d/G 
is independent of the initial choice of the principal bundle B(M, G) made in the construction 
of the holonomy algebra ‘HA.) Furthermore, there are points which do not correspond to any 
smooth connection; these are the generalized connections (defined on generalized principal 
G-bundles [ 181) which are relevant only to the quantum theory. Finally, there is a precise 
sense in which this space provides a “universal home” for measures that arise from lattice 
gauge theories [ 111. In specific theories, such as Yang-Mills, the support of the relevant 
measures is likely to be significantly smaller. For diffeomorphism invariant theories, on 
the other hand, there are indications that it would be essential to use the whole space. In 
particular, it is known that d/Q admits large families of measures which are invariant under 
the induced action of Diff( M) [5,13,14,9,6] and therefore likely to feature prominently in 
nonperturbative quantum general relativity [9,3]. Many of these arefaithful indicating that 
all of d/Q would be relevant to quantum gravity. 

Thus, the space A/9 is large enough to be useful in a variety of contexts. Indeed, at first 
sight, one might be concerned that it is too large to be physically useful. For example, by 
construction, it has the structure only of a topological space; it is not even a manifold. How 
can one then hope to introduce the basic quantum operators on L2 (d/Q, k)? In absence of a 
well-defined manifold structure on the quantum configuration space, it may seem impossible 
to introduce vector fields on it, let alone the Laplacian or the operators needed in quantum 
gravity! Is there a danger that AIQ is so large that it is mathematically uninteresting? 

Fortunately, it turns out that, although it is large, d/E is “controllable”. The key rea- 
son is that the @*-algebra l-Id is rather special, being generated by the Wilson loop 
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observables. As a consequence, its spectrum d/Q can also be obtained as the projective 
limit of a projective family of compact, Hausdorff, analytic manifolds [5,13,14,2 1,6]. Stan- 
dard projective constructions therefore enable us to induce on d/Q various notions from 
differential geometry. Thus, it appears that a desired balance is struck: While it is large 
enough to serve as a “universal home” for measures, da/G is, at the same time, small 
enough to be mathematically interesting and physically useful. This is the main message of 
this paper. 

The material is organized as follows. In Section 2, we recall from [21,6] the essential 
results from projective techniques. In Section 3, we use these results to construct three 
projective families of compact, Hausdorff, analytic manifolds, and show that d/G can be 
obtained as the projective limit of one of these families. Since the members of the family 
are all manifolds, each is equipped with the standard differential geometric structure. Using 
projective techniques, Sections 4 and 5 then carry this structure to the projective limits. Thus, 
the notions of forms, volume forms, vector fields and their Lie-derivatives and divergence 
of vector fields with respect to volume forms can be defined on d/B. The vector fields 
which are compatible with the measure (in the sense that their divergence with respect 
to the measure is well defined) lead to essentially self-adjoint momentum operators in the 
quantum theory. In Section 6, we turn to Riemannian geometry. Given an additional structure 
on the underlying manifold M - called an edge-metric - we define a Laplacian operator on 
the C2-functions on d/Q and construct the associate heat kernels as well as the heat kernel 
measures. In Section 7, we point out that d/Q admits a natural (degenerate) contravariant 
metric and use it to introduce a Laplace-like operator. Since this construction does not 
use any background structure on M, the action of the operator respects diffeomorphism 
invariance. It could thus define a natural observable in diffeomorphism invariant quantum 
theories. Another example is a third-order differential operator representing the “volume 
observable” in quantum gravity. Section 8 puts the analysis of this paper in the context of 
the earlier work in the subject. 
: A striking aspect of this approach to geometry on d/6 is that its general spirit is the same 

‘as that of noncommutative geometry and quantum groups: Although, there is no underlying 
differentiable manifold, geometrical notions can be developed by exploiting the properties 
of the algebra of functions. On the one hand, the situation with respect to d/6 is simpler 
because the algebra in question is Abelian. On the other hand, we are dealing with very large, 
infinite-dimensional spaces. As indicated above, a primary motivation for this work comes 
from the mathematical problems encountered in a nonperturbative approach to quantum 
gravityZ2] and our results can be used to solve a number of these problems [9,3]. However, 
there are some indications that, to deal satisfactorily with the issue of “framed loops and 
graphs” that may arise in regularization of certain operators, one may have to replace the 
structure group SU (2) with its quantum version SU (2),. Our algebraic approach is well 
suited foran eventual extension along these lines. 
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2. Projective techniques: General framework 

In this section, we recall from [21,6] some general results on projective limits which will 
be used in the rest of the paper. 

We begin with the notion of a projective family. The first object we need is a set L of 
labels. The only structure L has is the following: it is a partially ordered, directed set. That 
is, it is a set equipped with a relation “L” such that, for all y, y’ and y” in L we have: 

y1y; y ? y’ and y’ ? y =+ y = y’ ; y L y’ and y’ 2 y” =R y z y” ; (1) 

and, given any y’, y” E L, there exists y E L such that 

Y 2 Y’ and yzy”. (2) 

Aprojectivefamily (X,, pyy~)y,y~E~ consists of sets X, indexed by elements of L, together 
with a family of surjective projections, 

PYY’ . . Xv’ -+ xy , 

assigned uniquely to pairs (y’, y) whenever y’ 2 y such that 

(3) 

Pyy’ O Py’y” = PyyI’. (4) 

A familiar example of a projective family is the following. Fix a locally convex, topolog- 
ical vector space V. Let the label set L consist of finite-dimensional subspaces y of V*, the 
topological dual of V. This is obviously a partially ordered and directed set. Every y defines 
a unique subspace p of V via: fi E p iff (u, B) = 0 Vu E y . The projective family can now 
be constructed by setting X, = V/p. Each X, is a finite-dimensional vector space and, 
for y’ >_ y, pyyt are the obvious projections. Integration theory over infinite-dimensional 
topological spaces can be developed starting from this projective family [ 17,151. In this 
paper, we wish to consider projective families which are in a certain sense complementary 
to this example and which are tailored to the kinematically nonlinear spaces of interest. 

In our case, Xv will all be topological, compact, Hausdorff spaces and the projections py yf 
will be continuous. The resulting pairs (Xv, pyyt)y,yrE~ are said to constitute a compact 
Huusdorffprojective family. In the application of this framework to gauge theories, the 
labels y can be thought of as “floating” lattices (i.e., which are not necessarily rectangular) 
and the members X, of the projective family, as the spaces of configurations/histories 
associated with these lattices. The continuum theory will be recovered in the (projective) 
limit as one considers lattices with increasing number of loops of arbitrary complexity. 

Note that in the projective family there will, in general be no set x which can be 
regarded as the largest, .from which we can project to any of the X,. However, such a 
set does emerge in an appropriate limit, which we now define. The projective limit x of 
a projective family (X,, pyyf)y,y~E~ is the subset of the Cartesian product x yes X, that 
satisfies certain consistency conditions: 

x := ((Xy)@ E xy,tX,: y’ >_ y * Pyy’Xy’ = xv]. (5) 
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(In applications to gauge theory, this is the limit that gives us the continuum theory.) One 
can show that x, endowed with the topology that descends from the Cartesian product, is 
itself a compact, Hausdo~spuce. Finally, as expected, one can project from the limit to 
any member of the family: we have 

Next, we introduce certain function spaces. For each y consider the space @‘(X,) of the 
complex valued, continuous functions on X, . In the union 

U Q=“wy) 
YCL 

let us define the following equivalence relation. Given fVi E C’(X,), i = 1,2, we will say 

for every n P ~1, M, where p;, y3 denotes the pull-back map from the space of functions 
on X,, to the space of functions on X,. (Note that to be equivalent, it is in fact sufficient 
that equality (7) holds justfor one n > yt , M.) 

Using the equivalence relation we can introduce the set of cylindricalfunctions associated 
with the projective family (X,, pYy/)y,YfEL, 

CylO(X) := ( u C”(X,) )/ - . (8) 
YeL 

The quotient just gets rid of a redundancy: pull-backs of functions from a smaller set to a 
larger set are now identified with the functions on the smaller set. Note that an element of 
Cyl’(x) determines, through the projections (6), a function on x. Hence, there is a natural 
embedding 

CyP(Z) -P CO(Z), 

which is dense in the sup-norm. Thus, modulo the completion, Cyl”(z) may be identified 
with the algebra of continuous functions on 2 [6]. This fact will motivate, in Section 3, our 
definition of C” functions on the projective completion. 

Next, let us illustrate how one can introduce interesting structures on the projective limit. 
Since each X, in our family as well as the projective limit x is a compact, Hausdorff space, 
we can use the standard machinery of measure theory on each of these spaces. The natural 
question is: What is the relation between measures on X, and those on x? To analyze this 
issue, let us begin with a definition. Let us assign to each y E L a regular Borel, probability 
(i.e., normalized) measure, CL,, on X, . We will say that this constitutes a consistent family 
of measures if 

(P,,f)* I-+’ = LLy . 

Using this notion, we can now characterize measures on x [6]. 

(9) 



A. Ashtekur, J. L_xwandowski/Joumal of Geometry and Physics 17 (1995) 191-230 197 

Theorem 1. fit <Xv, pyyOyyk~ be a compact, Hausdoflprojective family and 2 be its 
projective limit: 
(a) Suppose p is a regular, Borel, probability measure on 2. Then p defines a consistent 

family of regular Borel, probability measures, given by 

CLy := Py+P. (10) 

@) Suppose (I-+)~,,w. is a consistentfamily of regular Borel, probability measures. Then 
there is a unique regular, Borel, probability measure p on x such that (p,)* u = ur. 

(c) p isfaithful ifpr := (pr)* I_L isfaithfulfor every y E L. 

This is an illustration of the general strategy we will follow in Sections 4-7 to introduce 
interesting structures on the projective limit; they will correspond to families of consistent 
structures on the projective family. 

3. Projective families for spaces of connections 

We will now apply the general techniques of Section 2 to obtain three projective families, 
each member of which is a compact, Hausdorff, analytic manifold. 

Fix an n-dimensional, analytic manifold M and a smooth principal fiber bundle B(M, G) 
with the structure group G which we will assume to be a compact and connected Lie group. 
Let A denote the space of smooth connections on B and 0 the group of smooth vertical 
automorphisms of B (i.e., the group of local gauge transformations). The projective limits -- - 
of the three families will provide us with completions A, $7 and d/Q of the spaces A, 6 
and d/G. As the notation suggests, m will turn out to be naturally isomorphic with the 
Gel’fand spectrum of the holonomy algebra of [4], mentioned in Section 1. 

The label set of all three families will be the same. Section 3.1 introduces this set and 
Sections 3.2-3.4 discuss the three families and their projective limits. The results of this 
section follow from a rather straightforward combination of the results of [5,13,14,2 1,6]. 
Therefore, we will generaily skip the detailed proofs and aim at presenting only the final 
structure which is used heavily in the subsequent sections. 

3.1. Set of labels 

The set L of labels will consist of graphs in M. To obtain a precise characterization of 
this set, let us begin with some definitions. 

By an unparametrized oriented analytic edge in M we shall mean an equivalence class 
of maps 

e : [0, l] -+ M, (11) 

where two maps e and e’ are considered as equivalent if they differ only by a reparametriza- 
tion, or, more precisely if e’ can be written as 

e’ = e o f, where f : [0, l] + [0, 11, (12) 
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is an analytic orientation preserving bijection. We will also consider unoriented edges for 
which the requirement that f-preserve orientation will be dropped. The end points of an 
edge will be referred to as vertices. (If the edges are oriented, each e has a well-defined initial 
and a well-defined final vertex.) A (oriented) graph y in M is a set of finite, unparametrized 
(oriented) analytic edges which have the following properties: 
(1) every e E y is diffeomorphic with the closed interval [0, 11; 
(2) if et, e2 E y, with et # e2, the intersection et tl e2 is contained in the set of vertices 

ofet, e2; 

(3) every e E y is at both sides connected with another element of y. 
(Note that the last condition ensures that each graph is closed.) The set of all the graphs 

in M will be denoted by L. This is our set of labels. 
As we saw in Section 2, the set of labels must be a partially ordered, directed set. On our 

set of graphs, the partial order z is defined just by the inclusion relation 

Yl 1 Y (13) 

whenever each edge of y can be expressed as a composition of edges of y’ and each vertex 
in y is a vertex of y’. 

To see that the set is directed, we use the analyticity of edges: it is easy to check that, 
given any two graphs yt, )q E L, there exists y E L such that 

~2~1 and ~2~2. (14) 

(In fact, given yt and n, there exists a minimal upper bound y .) This property is no longer 
satisfied if one weakens the definition and only requires that the edges be smooth. 

3.2. The projective family for A 

We are now ready to introduce our first projective family. 
Fix a graph y E L. To construct the corresponding space d, in the projective family, 

restrict the bundle B to the bundle over y, which we will denote by B,. Clearly, B, is 
the union of smooth bundles Be over the edges of y, B, = UeEy Be. For every edge 
e E y, any connection A E A restricts to a smooth connection A, on B,. The collection 
(&)eey =: Alv will be referred to as the restriction of A to y. Denote by $’ the subgroup 
of 9 which consists of those vertical automorphisms of B which act as the identity in the 
fibers of B over the vertices of y. Now, since the action of B on A is equivariant with the 
restriction map A + Al,, we can define the requited space-di, as 

‘I A; := (A/@‘),. (15) 

Note that A, naturally decomposes into the Cartesian product 

+ A, = xe&er ‘. (16) 

where A, is defined by replacing y in (15) with a single edge e. Next, let us equip A, 
with the structure of a differential manifold. Note first that, given an orientation of e, a 
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component A, of (A&,, = A, E A,, may be identified with the parallel transport map 
along the edge e which carries the fiber over its initial vertex into the fiber over its final 
vertex. Hence, if we fix over each vertex of y a point in B and orient each edge of y, we 
have natural maps 

&:A, += G and Ay:dy+ GE, (17) 

where E is the number of edges in y. The map can easily be shown to be a bijection. We 
shall refer to A, (or A,) as a group valued chart for A, or (A,). Now, since G is a compact, 
connected Lie group, GE is a compact, Hausdorff, analytic manifold. Hence, the map AV 
can be used to endow -4, with the same structure. 

Finally, we introduce the required projection maps. Note first that, for each y E L, there 
is a natural projection map ny 

ny : A + A, (18) 

defined by (15) which is surjective. We now use this map to define projections pv,,t between 
the members of our projective family. Let y’ 1 y . Then, we set 

PYY’ . . A,, -+‘AY (19) 

to be the map defined by 

Jry = Pyy’ 0 Ty’ . 

We now have the following proposition. 

cw 

Proposition 1. 
(i) The map A y of (17) is bijective and the analytic manifold structure dejned on d, by 

A y does not depend on the initial choice of points in the Jibers of B over the vertices 
of y and orientation of the edges made in its definition; 

(ii) for every pair of graphs y, y’ E L such that y’ > y, the map py ye defined by (18) 
and (20) is surjective; 

(iii) for any three graphs y, y’, y” E L such that y” > y’ z y, 

Pyy” = Pyy’ 0 Py’y,’ ; (21) 

and 
(iv) the maps py yf are analytic. 

The proofs are straightforward. It is worth noting however, that to show the surjectivity in 
(i), one needs the assumption that the structure group G is connected [5]. On the other hand, 
compactness of G is not used directly in Proposition 1. Compactness is used, of course, in 
concluding that d, is compact. 

Thus, we have introduced a projective family (.A,, py yt) y, y~E~ of compact, Hausdorff, 
analytic manifolds, labelled by graphs in M. We will denote its projective limit by 2. 
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We will conclude this subsection by presenting a characterization of 2. Note first that a 
connection A E A naturally defines a point A, E d, for each y E L and that the resulting 
family (A,),,L represents a point in 2. Hence, we have a natural map 

A --f si, (22) 

which is obviously an injection. There are however elements of 2 which are not in the 
image of this map. In fact, “most of’ 71 lies outside A. To represent a general element of 
2, we proceed as follows. Consider first a map I which assigns to each oriented edge e in 
M, an isomorphism 

Z(e) : &- + Be&, (23) 

between the fibers Be* over ek, the final and the initial end points of e. Suppose, that this 
map I satisfies the following two properties: 

Z(e-‘) = [Z(e)]-’ and Z(ez eel) = Z(e2) o Z(et) , (24) 

whenever the composed path e2 o el is again analytic. (Here e-l is the edge obtained from 
e by inverting its orientation and if el+ = e2_. e2 o el is the edge obtained by gluing edges 
e2, el.) Then, we call Z a generalized parallel transport in B. Let us denote the space of 
all these generalized parallel transports by P(B). Every element of the projective limit 2 
defines uniquely an element Zi of P(B). Indeed, let A = (A,),,L E 2. For an oriented 
edge e in M pick any graph y which contains e as the product of its edges (for some 
orientation) and define 

IA(e) := Z-Z(A,, e) , (25) 

where the right-hand side stands for the (ordinary) parallel transport defined by A, E A,. 
From the definition of the projective limit 2 it is easy to see that (25) gives rise to a 
well-defined map 

3i 3 A H ZA E P(B). (26) 

Furthermore, it is straightforward to show the following properties of this map. 

Proposition 2. The map (26) defines a one-to-one correspondence between the projective 
limit 2 and the space P(B) of generalized parallel transports in B. 

This characterization leads us to regard 2, heuristically, as the configuration space of 
all possible “floating ” lattices in M, prior to the removal of gauge freedom at the vertices 
(see (15)). 

3.3. The projective family for B 

As we just noted, in the projective family constructed in the last section, there is still a 
remaining gauge freedom: given a graph y, the restrictions of the vertical automorphisms 
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of the bundle B to the vertices of y still act nontrivially on A,. In this subsection, we will 
construct a projective family (&,, p,,,,~) from these restricted gauge transformations. In 
the next section, we will use the two families to construct the physically relevant quotient 
projective family. 

Given a graph y, the restricted gauge freedom is the image of the following projection: 

% : g7 + G/$ =: $/ . (27) 

Clearly, the group (& has a natural action on d, . Since 6,, consists essentially of the gauge 
transformations “acting at the vertices” of y (up to the natural isomorphism) one can write 
By as the Cartesian product group 

$/ = x v@kr(y)6v 9 (28) 

where &7, is, as before, the group of automorphisms of the fiber n-l(v) c B and Ver(y) 
stands for the set of the vertices of y . Now, each group 9, is isomorphic with the structure 
group G. Hence, if we fix a point in the fiber over each vertex of y , we obtain an isomorphism 

&, : & + G” (29) 

where V is the number of edges of y. Finally, given any two graphs y’ >_ y, the map ii, of 
(27) factors into 

ii, = Pyy’ 0 it,{, PYY’ . . Gy’ -+ Gy (30) 

and hence defines the maps p,,,, I uniquely. It is easy to verify that this machinery is sufficient 
toendow ($, ~~~~~~~~~~~ the structure of a compact, connected Lie group projective family. 
We have the following proposition. 

Proposition 3. 
(i) Thefamily (C&, pyy~)y,y~E~ defined by (27) and (30) is a smooth projective family; 

(ii) the maps pry1 are Lie group homomorphisms; 
(iii) the projective limit c of the family is a compact topological group with respect to the 

pointwise multiplication: let (gY)rEL, (hs&t, E c, then 

(gy)y~L(hs)sEt. := (g,h,),,t.; (31) 

(iv) there is a natural topological group isomorphism 

C + XXCM x9 Q (32) 

where the group on the right-hand side is equipped with the product topology. 

In view of the item (iv), we again have the expected embedding 

G -+ 72, (33) 

where the group Q of automotphisms of B is identified with the subgroup consisting of 
those families (gx)xEM E g which are smooth in x. 
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Let us equip $, = G” with the measure Jo, = (PO)“, where ~0 is the Haar measure 
on 8. Then it is straightforward to verify that (/L~)~~L is a consistent family of measures 
in the sense of Section 2. Hence, it defines a regular, Bore1 Probability measure PO on c. 
This is just the Haar measure on G. Thus, by enlarging the group G to G, one can obtain a 
compact group of generalized gauge transformations whose total volume isfinite (actually, 
unit). This observation was first made by Baez [ 141. 

-- 
3.4. The quotient d/Q and the projective family for d/9 

In the last two subsections, we constructed two projective families. Their projective 
limits, 2 and g are the completions of the spaces A and 6 of smooth connections and 
gauge transformations. The action of B on A can be naturally extended to an action of c 
on 2. Indeed, let (gY)YE~ E G and (As)sE~ E 2. Then, we set 

(&)GEL(~~)~EL := (&g&L E 2 7 (34) 

where (As, gs) H A&g6 denotes the action of && in As. Now, this action of G on 2 is -- 
continuous and G is a compact topological group. Hence, the quotient d/Q is a Hausdorff 
and compact space. This concludes the first part of this subsection. 

In the second part, we will examine the spaces A, /&. Note first that the projections 
pyyl defined in (20), (18) descend to the projections of the quotients: 

pyy’ :A,&,/~ + dvIGy . (35) 

We thus have a new compact, Hausdorff, projective family (A, /Qy , pyyOy,y~E~. This fam- 
ily can also be obtained directly from the quotient d/G by a procedure which is analogous 
to the one used in Section 4.1: the space dv/Qy assigned to a graph y is just the image of 
the restriction map 

ny : d/B --f (dIG)ly = &I$. (36) 

Therefore, it is natural to denote the projective limit of (A,/$+, pyy~)y,Y~~ is by d/G. 
The natural question now is: What is the relation between A/!$ and d/B? Note first that -- - 

there is a natural map from d/Q to d/G, namely 
-- 
d/9 3 [(Ay)y~~l * ([Ayl)y~~ E d/G, (37) 

where the square bracket denotes the operation of taking the orbit with respect to the 
corresponding group. Using the results of [2 1,6], it is straightforward to show the following 
proposition. 

Proposition 4. The map (37) defines a homeomorphism with respect to the quotient geom- -- 
etry on d/G and the projective limit geometry on d/G. 

Finally, by combining the results of [ 131 and [6], one can show that the space d/9 is 
-. naturally isomorphic to the Gel’fand spectrum of the holonomy @*-algebra 7-1d introduced 
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in Section 1. (Thus, there is no ambiguity in notation.) The space d/G thus serves as the 
quantum configuration space of the continuum gauge theory. This is the space of direct 
physical interest. 

We conclude with a number of remarks. 

(1) 

(2) 

(3) 

Since d/G is the Gel’fand spectrum of IHA, it follows [5] that there is a natural 
embedding 

U (d/G)B’ --f d/4, (38) 
B’ 

where (d/G)Br denotes the quotient space of connections on a bundle B’ and B’ runs 
through all the G-principal fiber bundles over M. Thus, although it is not obvious 
from our construction, m is independent of the choice of the bundle B we made in 
the beginning; it is tied only to the underlying manifold M. (See [4,5,13,21] for the 
bundle independent definitions.) 
Each member d, and $, of the first two projective families, we considered is a 
compact, analytic manifold. Unfortunately, the same is not true of the quotients A, /&, 
which constitute the third family since the quotient construction introduces kinks and 
boundaries. Because of this, while discussing differential geometry, we will regard 
d/G as d/G and deal with G-invariant structures on 2. That is, it would be more 
convenient to work “upstairs” on A even though d/G is the space of direct physical 
interest. This point was first emphasized by Baez [13,14]. 
In the literature, one often fixes a base point no in M and uses the subgroup G,, of 
6 consisting of vertical automorphisms which act as the identity on the fiber over 
xu E M as the gauge group. In the present framework, this corresponds to considering 

the subgroups 6y.*o c $ where y run through LXO, the space of graphs which have 
xu as a vertex. d/G can be recovered by taking the quotient of the projective limit of 
this family by the natural action of the gauge group at the base point. 

4. Elements of differential geometry on $I 

We are now ready to discuss differential geometry. We saw in Section 2 that one can 
introduce a measure on the projective limit by specifying a consistent family of measures 
on the members of the projective family. The idea now is to use this strategy to introduce on 
the projective limits various structures from differential geometry. The object of our primary 
interest is d/G. However, as indicated above, we will first introduce geometric structures 
of 2. Those structures which are invariant under the action of c on 2 will descend to - -- 
d/B = d/G and provide us, in Section 5, with differential geometry on the quotient. 

In Section 4.1, we introduce C” differential forms on 2 and, in Section 4.2, the CR volume 
forms. Section 4.3 is devoted to @” vector fields and their properties. Finally, in Section 
4.4, we combine these results to show how vector fields can be used to define “momentum 
operators” in the quantum theory. While we will focus on the projective family introduced 
in Section 3.2, our analysis will go through for any projective family, the members of which 
are smooth compact manifolds. 
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Throughout this section C” could in particular stand for Coo or C”. 

4.1. Differential fotnts 

Let us begin with functions. 
Results of Section 2 imply that the projective limit li of the family (A,, pyy~)ysy~E~ is 

a compact Hausdorff space. Hence, we have a well-defined algebra Co(x) of continuous 
functions on 2. We now want to introduce the notion of C” functions on 2. The problem 
is that 2 does not have a natural manifold structure. Recall however that the algebra Co(J) 
could also be constructed directly from the projective family, without passing to the limit: We 
saw in Section 2 that Co(x) is naturally isomorphic with the algebra Cyl’(& of cylindrical 
continuous functions. The idea now is to simply define differentiable functions on 2 as 
cylindrical, differential functions on the projective family. 

This is possible because each member A, of the family has the structure of an analytic 
manifold, and the projections pvvt are all analytic. Thus, we can define C” cylindrical 
functions Cyl” (2) to be 

Cyl”(Ji) := u C"(d,)/ -, 
Ycr 

(39) 

where the equivalence relation is the same as in (7) of Section 2; as before, it removes the 
redundancy by identifying, if y’ 1 y, the function f on d, with its pull-back f' on A,!. 
Elements of Cyl”(2) will serve as the C” functions on 2. Note that if a cylindrical function 
f E Cyl(x) can be represented by a function f,, E C”(d,), then all the representatives of 
f are of the C” differentiability class. 

Next we consider higher-order forms. The idea is again to use an equivalence relation 
- to “glue” differential forms on (dY&L and obtain strings that can serve as differential 
forms on 7i. Consider Uyc,. a(d,), where D(d,) denotes the Grassman algebra of all 
C” sections of the bundle of differential forms on d,. Let us introduce the equivalence 
relation - by extending (7) in an obvious way: 

Q(&,) 3 oyl - my2 E fi(d,) iff P~,~,+~ = p&mn (40) 

for any y’ 1 yt , M. (Again, if the equality above is true for a particular y’ then it is true 
for every y’ > yt , y2.) The set of differential forms on 2 we are seeking is now given by 

n(x) := ( u Q(d,))/ - . (41) 
Yer 

Clearly, 52(x) contains well-defined subspaces P”(A) of m-forms. Since the pull-backs 

p;v , commute with the exterior derivatives, there is a natural, well-defined exterior deriva- 
tive operation d on 2: 

d : 52”(x) + 52”+l(;7i). (42) 

One can use it to define and study the corresponding cohomology groups H”(x). 
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Thus, although 2 does not have a natural manifold structure, using the projective family 
and an algebraic approach to geometry, we can introduce on it C” differential forms and 
exterior calculus. 

4.2. Volume forms 

Volume forms require a special treatment because they are not encompassed in the dis- 
cussion of the previous section. To see this, recall that an element of L’(A) is an assignment 
of a consistent family of m-forms, for some fixed m, to each A,, with y L yo for some 
yu. On the other hand, since a volume form on 2 is to enable us to integrate elements of 
Cyl’(x), it should correspond to a consistent family of d,-forms on (dY)YEL, where d, 
is the dimension of the manifold A,. That is, the rank of the form is no longer fixed but 
changes with the dimension of A,. Thus, volume forms are analogous to the measures 
discussed in Section 2 rather than to the n-forms discussed above. 

The procedure to introduce them is pretty obvious from our discussion of measures. A 
@” volume form on 2 will be a family (+&L, where each u,, is a C” volume form with 
strictly positive volume on A,, such that 

C'(d,,) 3 frf - fv E a=‘(d,) =+ (43) 

A, -%J 

for all y’ 1 y and all functions fv on A,, where fvj = p;,, fv. Now, since A, are all 
compact, it follows from the discussion of measures in Section 2 that this volume form 
automatically defines a regular Bore1 measure, say u, on 2 and that this measure satisfies: 

(44) 

The most natural volume form ~0 on 2 is provided by the normalized, left and right 
invariant (i.e., Haar) volume form ,..LH on the structure group G. Use the map A, : d, --+ 
GE defined in (17) to pull-back to d, the product volume form (I1.#, induced on GE by 
&t, to obtain 

(45) 

We then have the following proposition [5,14,6]. 

Proposition 5. 
(i) The form $ of (45) is insensitive to the choice of the gauge over the vertices of y, 

used in the dejnition (17) of the map AY; 
(ii) the family of volume forms (/.L~)~~L satisfies the consistency conditions (43); 

(iii) the volume form I_LO defined on 2 by (,u~),,~L is invariant with respect to the action 
of (all) the automorphisms of the underlying bundle B(M, G). 
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The push forward &, of ~0. under the natural projection from 2 to d/G is the induced 
Haar measure on d/G of [5], chronologically, the first measure introduced in this subject. 
It is invariant with respect to all the diffeomorphisms of M. 

The measure ~0 itself was first introduced in [ 131. By now, several infinite families of 
measures have been introduced on 2 (which can be pushed forward to d/G) [ 13,14,9,7]. 
These are reviewed in [6]. In Section 6, using heat kernel methods, we will introduce another 
infinite family of measures. These, as well as the measures introduced in [6] arise from C” 
volume forms on 2. 

4.3. VectorPelds 

Introduction of the notion of vector fields on 2 is somewhat more subtle than that of 
m-forms because while one can pull back forms, in general one can push forward only 
vectors (rather than vector fields). Hence, given y’ p y, only certain vector fields on ,A,! 
can be pushed forward through (pVvO*. To obtain interesting examples, therefore, we now 
have to introduce an additional structure: vector fields on 2 will be associated with a graph. 

A smooth vectorjeld X(J’O) on 2 is a family (X,),,,, where X, is a smooth vector 
field on d, for all y 2 yo, which satisfies the following consistency condition: 

(P,y’)t X,f = x,7 whenever y’ 4 y ? M. (46) 

It is natural to define a derivation D on Cyln(& as a linear and star preserving map, 
D : Cyl”(it) -+ Cyl”-‘(xi), such that for every f, g E Cyl” (x), the Leibniz rule holds, 
i.e., D(fg) = D(f)g + D(g)f. As one might expect, a vector field X(m) defines a 
derivation, which we will denote also by X (M). Indeed, given f E Cyl”($ there exists 
y 2 yo such that f = [f,,]-. We simply set 

X(m)(f) := [X,(fy)l- E CyP(3i), (47) 

where X, (f,) is the action of the vector field X, on d, on the function f,, , and note that 
the right-hand side is independent of the choice of the representative. 

Finally, given any two vector fields, we can take their commutator. We have the following 
proposition. 

Proposition 6. Let X(Yl) = (Xy)yzy,. Y(M) = (Yv),,lM be two vectorjields on x Then, 
the commutator [X(n), Y(M)] of the corresponding derivations is the derivation de$ned by 
a vectorJield Z(n) on 2 (where y3 E L is any label satisfying y3 > ~1, )Q) given by 

z, = [X,7 Zyl (48) 

forany y L r3. 

For notational simplicity, from now on, we will drop the superscripts on the vector fields. 
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4.4. Vectorfields as momentum operators 

We will first introduce the notion of compatibility between vector fields X and volume 
forms /A on 3 and then use it to define certain essentially self-adjoint operators Z’(X) on 
L2(X CL). 

Let’us begin by recalling that, given a manifold ,?Z a vector field V and a volume form u 
thereon, the divergence div, V is a function defined on M by 

Lv u =: (div,V)u, (49) 

where L v denotes the standard Lie derivative. 
We will say that a vector field X = (X,),,, on 2 is compatible with a volume form 

CL = (I..+)~~L on 2 if 

GY divKv X, = divyy, X,1, (50) 

whenever y’ 1 y 2 yo. Note, that if (50) holds, the divergence div,,,X, is a cylindrical 
function. 

div, X := [divti,,Xy]- E CylO”(x). (51) 

We shall call it the divergence of X with respect to a volume form /.L. The next proposition 
shows that the divergence of vector fields on 2 has several of the properties of the usual, 
finite-dimensional divergence. 

Proposition 7. 
(i) Let X be a vectorfield and p, a smooth volume form on 2 such that X is compatible 

with p. Then, for every f, g E Cyl’ (x), 

s fX(gb = - s (X(f) + WV, JO_& I-L. (52) 

2 2 

(ii) Suppose that Y is another vector$eld on 2 which is compatible with p. Then, the 
commutator [X, Y] also is compatible with p, and 

div,[X, Y] = X(div, Y) - Y(div, X). (53) 

Pro05 The result follows immediately by using the properties of the usual divergence of 
vector fields X, and Y, on (d, , p,,) and the consistency conditions satisfied by X,, Yy 
and CL,, . 0 

We are now ready to introduce the momentum operators. Fix a smooth volume form CL = 
(c~r)~~~ on 2. In the Hilbert space L*(J, p), we define below a quantum representation 
of the Lie algebra of vector fields compatible with /.L. Let X be such a vector field on 2. We 
assign to X the operator (P(X), Cyl’ (2)) as 

P(X) := iX + ii(div, X) . (54) 
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(Here, Cyl’($ is the domain of the operator.) Clearly, (P(X), Cyl’(&) is a densely- 
defined operator on the Hilbert space L2(x, CL). Following the terminology used in quantum 
mechanics on manifolds, we will refer to P(X) as the momentum operator associated with 
the vector field X. As one might expect from this analogy, the second term in the definition 
(54) of the momentum operators is necessary to ensure that it is a symmetric operator. 

To examine properties of this operator, we first need some general results. Let us therefore 
make a brief detour and work in a more general setting. Consider a family of Hilbert spaces 

(‘F1,, &/‘)YJ fEr where r is any partially ordered and directed set of labels and 

&I : ?I, + l-&t (55) 

is an inner-product preserving embedding defined for each ordered pair y’ 2 y E r. The 
maps (55) provide the union UyG,- H,, with an equivalence relation defined as in (7). The 
Hermitian inner products (., .)V give rise to a unique Hermitian inner product on the vector 
space (Q,e.r H,,)/ - . For, if +, r#~ E (UYE,- Z-Z,)/ - , there exists a common label y E r 
suchthat* = [@-v]-and# = [&,]_,with@,,,&, ~&,andwecanset 

($7 4J) := ($$,&)v. (56) 

It is easy to check that this inner product is Hermitian. Thus, we have a pre-Hilbert space. 
Let ‘FI denote its Cauchy completion: 

31 = u 3iy/-. (57) 
N- 

On this Hilbert space ‘H, consider an operator given by a family of operators 
(0,, D,,(O,)),,r(o), where f (0) c r is a cofinal subset of labels (i.e., for every 
y E r there is y’ E r(O) such that y’ 1 v). We will say that (0,, 2),(0,)),,,-(o) 
is self-consistent if the following two conditions are satisfied: 

P;,lD,(Oy) 5 D,40,4 (58) 

0,I 0 p* YY’ = P;f 0 0, (59) 

for every y’ > y such that y’, y E f (0). Since the label set r(O) c f is cofinal, a 
self-consistent family of operators (0,, DD,(O,)),,r(p) defines an operator 0 in ‘FI via 
O($) := [O,@cr,l-. 

A general result which we will apply to the momentum operators is the following. 

Lemma 1. Let (O,, D, (O,)),,r(o) be a self-consistent family of operators and r( 0) 
be cojinal in r. Then: 

6) 

(ii) 

(0,, DD, (O,,)&r(p) defines uniquely an operator 0 in Ii acting on a domain 

D(O) := Uvcr(o) qJ(O,)l - and such that for every fv E D,, (0,) 

O([f,l-) = [O,(f,)l-; w9 

if (0,, 2), (0,)) is essentially self-adjoint in H, for every y E I’( 0), then the 
resulting operator (0, D( 0)) defined in (i) is also essentially self-adjoint; 
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(iii) if (0,) VD, (0,)) is essentially self-adjoint in Hr for every y E f’( 0), then the family 
ofthe self-dual extensions (d,, DD, (6,)&r(o) is self-consistent. 

Proof Part (i) is obvious from the above discussion. 
We will prove (ii) by showing that the ranges of the operators 0 + il and 0 - il, where 

I is the identity operator, are dense in H. They are given by 

(0 f WWO)) = U (0, f W~,(O,>)l - . (61) 
w-(O) 

But, as follows from the hypothesis, the range of each of the operators 0, f iZ is dense in 
the corresponding H,,. Hence indeed, the right-hand side of (61) is dense in ‘X 

To show (iii), recall that the self-adjoint extension of an essentially self-adjoint operator 
is just its closure. Let y’, y E f (0) and y’ > y. Via the pull-back p;,,, we may consider 
H, as a subspace of 7+. Since (0,~) D,r (O,!)) is an extension of (0, , ‘Z& (0,)), the 
closure (d,,r , DDrr( d,!)) is still an extension for (6,, 27, (a,)). This concludes the proof 
of the lemma. 0 

We can now return to the momentum operators (P(X), Cyl’(31)) on L*(;;i, CL). 

Theorem 2. 
(i) &rX = (X,),?, and p = (pr),+~ be a smooth vectorjeld and volumeform on the 

projective limit a Suppose X is compatible with u; then, the operator (P(Y), Cyl’ (2)) 
of (54) is essentially self-adjoint on L*(& ,u); 

(ii) let Y be another smooth vectorfield on the projective limit, also compatible with the 
measure u. Then, the vector$eld [X, Y] also is compatible with u and 

NX, YI) = i[P(W, W)l. (62) 

pro05 Part (i) of the theorem follows trivially from Lemma 1; we only have to substitute 
L2(Xi, ,u) for ‘H, L*(d,, pr) for H,, L for r and ((i(Y, + @iv,,. Yy))vrvo, Cyl’@)) for 

(qf,q(0,)),,r(o). 
Finally, part (ii) can be shown by a simple calculation using Proposition 7. Cl 

This concludes our discussion of the momentum operators. Most of the results of this 
section concern the case when a vector field is compatible with a volume form. In the next 
section we shall see that a natural symmetry condition implies that a vector field on 2 is 
necessarily compatible with the Haar volume form. 

5. Elements of differential geometry on d/G 

We now turn to d/G, the space that we are directly interested in. 
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5.1. Forms and volume forms 

Let us begin with functions. We know from Section 3.4 that 
- -- 
d/G = d/G. (63) 

Therefore, we can drop the distinction between functions on d/G and c-invariant functions 
defined on 2. In particular, we can identify the @*-algebra @O(d/B) of continuous functions 
on d/Q with the @*-subalgebra of g- invariant elements of @O(x). This suggests that we 
adopt the same strategy towards differentiable functions and forms. Therefore, we will let 
Cyl’ (d/G) be the *-subalgebra of G-invariant elements of Cyl” (A), and 52 (d/G) be the 
subalgebra consisting of &invariant elements of Grassmann algebra 52 (2). The operations 
of taking exterior product and exterior derivative is well defined on Q(d/E). 

Similarly, by a volume form on d/G, we shall mean a 6-invariant volume form on 2. 
As noted in Section 4.2, the induced Haar form on 2 is G invariant and provides us with a 
natural measure on d/G. Furthermore, since g is compact, we can extract the ~-invariant 
part of any volume form u on 2 by an averaging procedure (see also [ 131). 

Proposition 8. Suppose u = (+&L is a volume form on x Then, if Rg denotes the 
action of g E c on A and dg denotes the Haar measure on 8, 

(W 

is a c-invariant volume form on 2 such thatfor every G-invariantfunction f E @O(x) 

J fv = 1 fV. (65) 

A 3 

In terms of the projective family, we can write out the averaged volume form more 
explicitly. Let v = (v,,&L. Then, the averaged volume-form V = (T$&L where 

i$-= J (R(,,....,gv))*q&l A . . . A&v 7 (66) 
G” 

where fb,,....,,) denotes the action of (gr, . . . , gv) E G,, on dY (!& being identified 
with G’). 

5.2. VectorJields on d/Q 

The procedure that led us to forms on d/G can also be used to define vector fields on d/Q. 
Furthermore, for vector fields, one can obtain some general results which are directly useful 
in defining quantum operators. We will establish these results in this subsection and use 
them to obtain a complete characterization of vector fields on AIQ in the next subsection. 



A. Ashtekaz J. L.ewandowski/Joumal of Geometry and Physics 17 (1995) 191-230 211 

Thegroup~actsonvectorfieldson3iasfollows.LetX = (X,),,,,andg = (gy)yE~ E 
G. Then 

Re * X := (Rg,,* X,),?, 3 (67) 

where, as before, R,, : A, + A, is the action of Gy on A,. In the first part of this 
subsection, we will explore the relation between c-invariant vector fields and the induced 
Haar form ~0 on 2. Since we are dealing here only with the Haar measure, for simplicity 
of notation, in this subsection, we will drop the (measure-)suffix on divergence. 

Theorem 3. Let X = (X,),,, be a C”+’ vectorfield on x If X is g-invariant then it is 
compatible with the Haar measure ~0 on 3 and div X E Cyl”(2) is c-invariant. 

Proo~T We need to show that, if y, y’ s yo, then 

div X, - div X,I . (68) 

Since the family (X,),,, is consistent, it is sufficient to show that if y;! 2 yt , then 

P;,~ W(py,,)* X,) = div X, . (69) 

Now, the graph m consists of say two types of edges: (i) edges et, . . . , eE3, which are 
contained in yt and (ii) the remaining edges e’E3+t, . . . , ek, . The first set of edges forms 
a graph y3 2 y1 whose image coincides with that of yt . Therefore, in particular, we have 
y3 1 yo and X, is well defined. Our strategy is to decompose the projection pn M as 

PYI M = PYln”PY3M (70) 

and prove that each of the two projections on the right-hand side satisfies (69), i.e., that we 
have 

pFIY, (Wpy,,L X,) = div X, (71) 

phM (Wp,& X,> = div X, . (72) 

These two results will be established in two lemmas which will conclude the proof of the 
main part of the theorem. 

Once this part is established, the c-invariance of div(X) E CyP(x) is obvious from the 
~-invariance of the vector field X and of the measure ,q. 

Lemma 2. Let y3 > y1 be such that the images of y3 and y1 in 0 coincide. Let X, be a 
&-invariant vector field on A, and X,,, a &,, -invariant vector field on A,, such that 

(Pnn)*Xy, = X,,. Then, 

pc, n (div XY, ) = div X, . (73) 

Pro05 Since y3 is obtained just by subdividing some of the edges of yt, it follows that 
the pull-back p;, M is an isomorphism of the C*-algebra of continuous and Gy, - invariant 
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functions on A, into the C*-algebra of continuous and &-invariant functions on d,. 
Hence it defines an isomorphism between the corresponding Hilbert spaces. The vector 
fields X,, and X, define the operators which are equal to each other via the isomorphism. 
Hence, their divergences are also equivalent as operators, and being smooth functions, are 
just equal to each other, modulo the pull-back. 

Now, we turn to the second part, (72), of the proof. 

Lemma 3. L.er X = (X,),zuo be a Q-invariant vectorfield on x L..et )q ? y3 L M, be 
such that M is obtained by adding edges to M the images of all of which, except possibly 
the end points, lie outside the image of y3. Then, 

p&(div X,) = div X, . (74) 

Proof: Via appropriate parametrization we can set 

d, = A, x GE2-E3, (75) 

so that the map pnM, becomes the obvious projection 

pMM : A, x GE2-E3 + d, . (76) 

Since X, projects unambiguously to X,, it follows that we decompose X, as 

X, = (X,, XE3+1,. . . , xE2), (77) 

where, for each choice of a point on A,, and of variables gEJ+j, j # i, we can regard 
XE~+~. as a vector field on G. (Here, i = 1, . . . , E2 - E3, and dE3+k is identified with G.) 

We will now analyze the properties of these vector fields. Let us fix an edge eE3+i. We will 
now show that XE~+~ does not change as we vary gE3+t, . . . , gE3+i-l, gE3+i+tr . . . , g&. 
Let us suppose that there exist some edges eE,+j which are removable in the sense that one 
can obtain a closed graph y4 2 y3 after removing them. Clearly, M L y4 1 yo. Hence, 
there is a vector field X, on A, such that X, , X,, X, are all consistent. This implies 
that XE3+i does not change if we vary gE3+j. Now let us consider the case when edges of 
y3 are not removable. Then, we can construct a closed graph y5 

y5 := y2 U (e+, e-1 (78) 

by adding two new edges eh to join the vertices of eE3+i to any two vertices of y3. Then, 
ys > M > y3 and we have consistency of the vector fields X,, X,, X,. Clearly, the 
XEy+i component of X, coincides with the XEs+i component of X,. But in X,, all the 
edges eE3+j with j # i am removable. Hence, XEs+i does not depend on gEs+j if i # j. 
Thus, we have shown that XE3+i is independent of gj if i # j. 

So far, in this lemma, we have only used the consistency of (X,),?,. We now use the 
&invariance of X to show that (for each g, E d,) XE3+i is a left-invariant vector field on 
G. Let LJ be a vertex of eE3+i which is not contained in y3. For definiteness, let us suppose 
that it is the final vertex. Then, under the gauge transformation a in the fiber over this vertex, 
we have 
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(a* Xn)E+i = (La-l)* XE+i 9 (79) 

where the left-hand side is the Es+ith component of the vector field in the parenthesis and 
L, is the left action of a on G. (Here, we have used our earlier result that XE+i does not 
depend on gE+ j when i # j.) Now, from GM-invariance of X,, it follows that 

XE+i = L*XE+i. w 

This conclusion applies to any value of i = ,l, . . . , E2 - Es. Thus, for each choice of 
g, E A,, XE3+i are, in particular, divergence-free vector fields on G. 

We now collect these results to compute the divergence of X, : 

divX, = divX, + divXE,+t + ... -t divXE, = divX, , (81) 

where, for simplicity of notation, we have dropped the pull-back symbols. 0 

Using this result and those of Section 4.4, we have the following theorem on the operators 
on L2 (d/G, po) defined by c-invariant vector fields on 2. 

Theorem 4. Let X be a c-invariant vectorfield on z The operator 

P(X) := i(X + :divX) (82) 

with domain Cyl’ (d/G) is essentially self-adjoint on L2(d/E, ~0). Suppose Y is another 
c-invariant vector$eld on d/Q; then, [X, Y] is also a c-invariant vectorfield on d/Q and 

NX, YI) = i[WO, W)l (83) 

on Cy12(d/6). 

5.3. Characterization of vectorJields on d/G 

In the previous subsection we showed that the c-invariant vector fields on 2 have inter- 
esting properties. It is therefore of considerable interest to have control on the structure of 
such vector fields. Can one construct them explicitly? What is the available freedom? To 
answer such questions, we will now obtain a complete characterization of the G-invariant 
vector fields on 2 in the case when G is assumed to be semisimple. 

Fix a graph yo. To construct a ~-invariant vector field X = (X,),?, on 2, we have, 
first of all, to specify a Qm-invariant vector field on A,. We want to analyze the freedom 
available in extending this vector field to A, for all y 1 yo. Now the edges of any y 5 M 
can be ordered in such a way that: 
(1) thefirstnedges,et,..., e,, are contained in M, for an appropriate n; 
(2) thenextm-nedges,e,+t ,..., e,, begin at (i.e., have one of their vertices) on yo, 

for some m; and 
(3) the remaining edges, say, e,+t, . . . , ek, do not intersect )$ at ah. 

Hence, we can decompose A, as 

A, = d,, x Gm-n x Gk-m , (84) 
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where yt 2 yo is the graph formed by the first IZ edges. Given X,, the projection d,, + A, 
determines - via consistency conditions - the vector X,, modulo a vector field tangent to 
the fibers of the projection. Next, consider the last k - m components of X, corresponding 
to the last set of edges. Since both vertices of these edges lie outside yo. the corresponding 
vector fields on G have to be both right and left invariant. Since we have assumed that the 
gauge group is semisimple, this implies that they must vanish. Thus, the essential freedom 
in extending X, to X, lies in the m - n components of X, associated with the second set 
of edges. Hence, using the notation of Lemma 3, we can express X, as 

XY := w,, , ~(k,+11), . . * 3 ~([Gnl), 0, . . . ,O) - 

Here, F([ei]) with i = n + 1, . . . , m is a function 

(85) 

F([eil> : .A,, + ‘(‘C&i)) 

whose values are Gvi -invariant vector fields on d,,i, where ui is the end of the edge ei which 
is not contained in yo. The ~-invariance of X implies that F([ei]) should have certain 
transformation properties under the action of the groups 0, which act on the fibers over the 
vertices u of yo. Given a, E E, , we need: F([ei]) o a, = (a”);‘F([ei]) if u is the vertex 
of ei and F([ei]) o a, = F([ei]) otherwise. 

We can now summarize the information that is necessary and sufficient to define a c- 
invariant vector field X on 2. First, we need a graph m. For each n E yo, let e, be the 
set of germs of edges (i.e., the data at x that is necessary and sufficient to specify edges) 
which do not overlap with any of the edges of yo that pass through x. (Recall that edges are 
all analytic.) Let P, be the sheaf of germs of transversal edges over the yo divided by the 
reparametrizations, i.e., set 

Pye := U P X. (86) 
XCM, 

Next, given a point x on M let yx 2 M be the graph obtained by cutting the edge on which x 
lies into two at x. (If x is a vertex of yo, then yx = ~0.) Finally, choose a point in the fiber of 
the underlying bundle B(M, G) over each point of every edge on m. Up to this freedom, the 
group & is then identified with G. Then, the necessary and sufficient data for constructing 
a ~-invariant vector field X = (X,)yrm (regarded as an operator on ~-invariant function 
on ;;i) are the following: 
(1) A C&,,-invariant vector field X, on A, and a $&,, - invariant Vector Field X,, on A, 

consistent with X,, for every yt obtained from M simply by subdividing edges; 
(2) A map from the set of germs of transversal edges Pm into the Lie algebra (of left- 

invariant vector fields on G) LG-valued functions on ,A,, 

F : Pm + C”(d,) 60 LG; (87) 

which has the following transformation properties with respect to the group &7,,= : 

Weld 0 a, = W&) ifu#x 
u-l F([e],)u if u = x (88) 
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for every vertex u of yx . Then, given an edge e intersecting y at x and the corresponding 
space A, a value of F ([e]) defines unambiguously a QVt -invariant vector field on sl, , 
u’ standing for the other end of e (because the remaining freedom of a gauge for A, 
is covered by the action of &I). 

Thus, there is a rich variety of G-invariant vector fields on 3. The vector field is 
-invariant. If the cometric tensor and the l-form are c-invariant, so is the vector field. 

We will conclude this discussion of vector fields by pointing out that, if one is interested 
only in the action of the vector fields on cylindrical functions, a priori there appears to be 
some freedom in one’s choice of the initial definition itself. There are at least three ways of 
modifying the definition we used. 
(1) First, we could have chosen another set of labels. Our definition used graphs y 2 M for 

some M. Instead, we could have labelled the vector fields by any cofinal L. However, it 
is not clear if all our results would go through in this more general setting. In particular, 
it is not obvious that the vector fields would then form a Lie algebra. 

(2) Another possibility is to use the same labels (y 2 yc for some yo) but to weaken the 
consistency conditions slightly. Since we only want to act these vector fields (X,),,, 
on functions which are g-invariant, it would suffice to require only that the consistency 
conditions are satisfied “modulo the gauge directions”. That is, one might require only 
that each X, is G,,-invariant and pyyt* X,,! = X, if y’ >_ y, bothmodulo thedirections 
tangent to thejbers ofthe group $, . However, then it is no longer clear that the notion 
of divergence of X is well defined. Further work is needed. 

(3) Finally, throughout this paper, we have considered projective families labelled by 
graphs. Alternatively, one can also consider projective families labelled by subgroups 
of the group of equivalence classes of closed, based loops in M, where two loops 
are equivalent if the holonomy of any connection around them, evaluated at the base 
point, is the same (see [21,6]). One can define G-invariant vector fields in this setting 
as well and the resulting momentum operators on L*(d/G, ~0) are essentially the 
same as those introduced here. However, the proofs are more complicated since they 
essentially involve decomposing loops in to graphs used here. 

6. Laplacians, heat equations and heat kernel measures on d/6 associated 
with edge-metrics 

In the last two sections, we saw that, although A and d/Q initially arise only as compact 
topological spaces, using graphs on M and the geometry of the Lie group G one can introduce 
on them, quite successfully, structures normally associated with manifolds. Therefore, a 
natural question now arises: Can one exploit the invariant Riemannian geometry on G 
to define on d/Q new structures? In this section, we will show that the answer is in the 
affirmative. 
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6.1, A Luplace operator 

Let us fix an (left and right) invariant metric tensor k on G. The obvious strategy -which, 
e.g., successfully led us to the Haar volume form in Section 4.2 - would be to use the fact 
that A, can be identified with GE, to endow it with the product metric kb and let At be the 
associated Laplacian operator. (Here, as before, E is the number of edges in the graph y .) 
Unfortunately, this strategy fails: the resulting family of operators (a;),,~ fails to be self- 
consistent. (This is why we have used the prime in k’ and A’.) This is a good illustration of 
the subtlety of the consistency conditions and brings out the nontriviality of the fact that the 
families that led us to forms, vector fields and the Haar measure turned out to be consistent. 

The “minimal” modification that leads to a Laplacian requires an additional ingredient: a 
metric on the space of edges on M. An edge-metric on M, will be a map which assigns to each 
edge (i.e., finite, analytic curve) e in M a nonnegative number, l(e) which is independent 
of the orientation of e and additive. i.e. satisfies 

I(e-‘) = l(e) and I(el o e2) = f(el) + l(e2) . (89) 

1 can be thought of as a generalized “length” function on the space of edges. The technique of 
using such “an additive weight” was suggested by certain methods employed by Kondracki 
and Klimek [ 161 in the context of two-dimensional Yang-Mills theory. 

It is not difficult to construct edge-metrics explicitly. ‘Avo simple examples of such 
constructions are: 
(1) Introduce a Riemannian metric g on M and let I(e) be the length of e. 
(2) Fix a collection s of analytic surfaces in M and define l(e) to be the number of isolated 

points of intersection between e and s. 
Given an edge-metric 1, for each graph y we define on A,(= GE) the following 

“weighted” Laplacian 

AYJ) := l(el)A,, + . . . + l(eE)d,, , (90) 

where Aei is an operator which applied to a function fy (g,, , . . . , geE) acts (only) on the 
G-variable gei as the Laplacian of the metric k on G. It is not obvious that this A,,(r) is 
well defined since the isomorphism between A, by GE used in the above construction is 
not unique. However, two such isomorphisms are in essence related by an element of $Ty 
and since A is left and right invariant on G, A,,(l) is well defined; it is insensitive to the 
ambiguity in the choice of (g,, , . . . , g,,) that label the points of A,. Furthermore, we have 
the following theorem. 

Theorem 5. 
(i) The family ofoperators (A,,(l), C2(dy)&L is self-consistent (in the sense of (58) 

and (59)); 
(ii) The operator (A(l), Cyl’@)) dejined in the Hilbert space L2(x, PO), where ~0 is the 

Haar volume form on x by 
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4) (if,]-> := [A,,(r) <fy>l- 

is essentially self-adjoint; 

(91) 

(iii) the operator A(t) is c-invariant and thus defines an essentially self-adjoint operator 
(do), Cyl*(A/@) in L*(d/G, pb), where & is the push forward of po to d/G. 

Pro05 Note first that, for every y’ > y, the projection pyyf : d,! + A, can be written as 
a composition of projections 

Pyy’ = Pyy, 0 . . . O Pyny’ (92) 

each of the terms being one of the following three kinds: 

(&?I,. . . ,gk,. . .> l-b c&3,. . . , (&,. . .>, 

(gl....,&-l,gk,*..) I+ (gl,...,gk-I,...), (93) 

kl,..., gk-1. gk) I+ (gl* .-., gk-lgk). (94) 

The operators At(,),, are automatically consistent with projections of the second class 
above; no conditions need to be imposed on 1 (ei). However, to be consistent with a projection 
of the third kind, the numbers 1 (e) have to satisfy the following necessary and sufficient 
condition. Let f be a function on G. Whenever we divide an edge e into e = e2 o et, then 

U(et)&, + l(e2)Ae,)f (g2, gl) = (l(e)Af)(gzgl) , (95) 

where f (g2, gl) = f (8281). A short calculation shows that the necessary condition for this 
to hold is precisely our second restriction on l(e): I(e) = /(et) + I(e2). Similarly, our first 
restriction 1 (e-l) = 1 (e) is necessary and sufficient to ensure consistency with respect to 
the projections of the first type. This establishes part (i) of the theorem. 

Part (ii) follows easily from Lemma 1 and from the essential self-adjointness of the 
operators (A$), @*(dy)) defined in L*(d,, (p.~)~). Part (iii) is essentially obvious. 0 

Remark 6. If l(e) is nonzero for every nontrivial edge - as is the case for the first example 
of I(e) - we can introduce on each A, = GE a block diagonal metric tensor k, := 
(l(el)-'k, . . . ,I (eE)-‘k). The operator A$) is just the Laplacian on A, defined by k,. 

6.2. The heat equation and the associated volume forms 

Given an edge metric I(e), we have a Laplacian on 2. It is now natural to use these 
Laplacians to formulate heat equations on 2, to find the corresponding heat kernels and to 
construct the associated heat-kernel measures on 2. These would be natural analogs of the 
usual Gaussian measures on topological vector spaces. 

As usual, heat equations will involve a parameter t with 0 < t and a Laplacian Ay) on 
2. A l-parameter family of functions fr E Cyl*(x) will be said to be a solution to the heat 
equation on 3i if it satisfies 

$fr = 4) ft. 
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Our main interest lies in defining a heat kernel for this equation. Recall first that the heat 
kernel pt on G is the solution to the heat equation on G satisfying the initial condition 
p,=u = 6(g, IG), where 1~ is the identity element of G and 6 is the Dirac distribution. As 
is well known [23], for each t, pt is a positive, smooth function on G. The next step is to 
use pr to find a heat kernel py,r on (d,, A,,(l)). This py,? is a function on d, x A,. Using 
a coordinate of d, induced by a group valued chart A, = GE, we can express ,o~,~ as 

,+.r(A,, B,) = us, . . . P~&‘~E), (97) 

whereAY = (at ,..., a~),& = (bt, . . . . bE)andwheresi withi = 1, . . . . Earepositive 
numbers given by si = l(ei)t. (Note that, since the heat kernel P, on G is Ad(G)-invariant, 
the above formula is independent of the choice of coordinates.) The family (P,,,~&L does 
not define a cylindrical function on 2. However, we can consider the convolution of the 
heat kernel py,r with a function fV E C'(d,). In the coordinate used above, this reads 

bt,y * fvNA,) = ~r,y(A,, By)f@yhH@y) 7 (98) 

4 

where j_LH is the Haar measure on A,. Now, the key point is that these convolutions do 
satisfy the consistency conditions 

fYI - fn * Prm * fv, - Pr,y, * fy, . 

Therefore, we can define a convolution map pr+ on 2. 

(99) 

Theorem 6. m A(Z) = (A,,(z)),,,~,L be the Lapluce operator on 2 given by the edge- 
metric 1 and let (P~,~)~~L be the corresponding family of heat kernels, with t z 0. Then: 

(i) there exists a linear map pr* : Co(x) + Co@) dejined by 

PI * f = br.y * fyl- 7 (1W 

which is continuous with respect to the sup-norm; 
(ii) if f E Cy12(x) then 

fi := Pt*f (101) 

solves the heat equation with the initial value ft=o = f; 
(iii) the map pr* curries C’(m) (the G-invariant elements of C’(x)) into C’(m). 

Proof. To establish (i), it is sufficient to prove the right-hand side of (100) is well defined. 
This would imply that p: is well defined on Co@). Continuity follows from the explicit 
formula for the convolution. 

Let f = [f,,,]- = [fn]- E Cy12(;7i). Choose any y’ 2 yt, M. Using the consistency 
conditions satisfied by the family (A,,(l))y,y~E~ which are guaranteed by Theorem 5, and 
setting i = 1,2, we have 
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on A,,. Thus, we conclude that the pull-backs of the two convolutions satisfy the heat 
equation on .A,! with initial values p*vly, fv, and pLy,fy2 respectively. However, since 

f Y, - fy2, the two initial values are equal. Hence, the two pulled-back convolutions on d,f 
are equal. Finally, since 

P;,,f (PLY, * fy,) = P1.y' *P;,,&, = P*M)/ Pf.M * fr, ( (103) 

we conclude that the right-hand side of (100) is well defined. 
Part (ii) is now obvious and part (iii) follows from the c-symmetry of A(‘). 0 

We can now define the heat-kernel volume forms on 2 associated to the Laplace operator 
Al. These are the natural analogs of the Gaussian measures on Hilbert spaces, which can 
also be obtained as a projective limit of Gaussian volume forms on finite-dimensional 
subspaces. Now, on a finite-dimensional Hilbert space, the natural Gaussian functions g(2) 
are given by the heat kernel, g(2) = pr(o, ,?), and the Gaussian volume form is just the 
product of the translation invariant volume form by g(Z). The heat-kernel forms on d, 
will be obtained similarly by multiplying the Haar volume form by the heat kernel. Unlike 
a Hilbert space, however, A, does not have a preferred origin. Let us therefore first fix a 
point & = (Ao~),,~L E 2. Then, on each A,, we define a volume form uy which, when 
evaluated at the point A, E d, , is given by 

~t,~(Ay) := P,,~(Ao~, A&;(&), (104) 

where $(Ay) denotes the Haar form on A, at A,. We have the following theorem. 

Theorem 7. 
(i) Thefamily (ut,Y)yEL of volume forms defined by (104) is consistent; 

(ii) the measure, ut := (LJ~,~)~~L, dejned on 2 by the volume form is faithful ifffor 
every nonzero edge e in M, Z(e) > 0. 

The proof follows from Theorem 6, and from the nonvanishing of the heat kernel on G. 
Thus, to define a heat-kernel volume form u, we have used the following input: an invariant 

metric tensor on G, an edge-metric 1, a point & E 2 and a “time” parameter t > 0. In 
terms of the heat kernel of A(t), the integral of a function Co(x) 3 f = [ fv]- with respect 
to ur is given by the formula 

.I f = (Pt * f)(Ao), (105) 

which is completely analogous to the standard formula for integrals of functions on Hibert 
spaces with respect to the Gaussian measures. 
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- -- 
Finally, let us consider the quotient d/Q = d/G. According to Theorem 6, the heat 

kernel pr naturally projects to this quotient and hence we have a well-defined Gaussian 
measure (105) on d/&T. To have a c-invariant volume form on 2 corresponding to this 
measure, we just average the Gaussian volume form on 2, following the procedure of 
Section 5.1 

F= J (Rg* ut)dg , (1W 

where dg, as before, is the Haar form on G. The resulting volume form Vr shall be referred 
to as a Gaussian volume form on d/G. Finally, on d/Q, there is a natural origin [&I 
whence the freedom is the choice of Au can be eliminated. To see this, recall first that while 
constructing a heat-kernel measure on a group, one picks the identity element as the fiducial 
point. The obvious analog in the present case would be to choose &J E 2 such that the 
parallel transport given by Au (see (26)) along any closed loop in h4 is the identity. This 
does not single out & uniquely in 2. However, all points A0 E 2 with this property project - -- 
down to a single point in the quotient d/6 = d/O. 

The techniques introduced in this section can be extended in several directions. In the 
next subsection, we present one such extension, where heat-kernel measures are defined on 
the projective limit of the family associated with noncompact structure groups G. Another 
extension has been carried out in [8] where diffeomotphism invariant heat kernels are 
introduced using, in place of the induced Haar measure on 3, the diffeomorphism invariant 
measures introduced by Baez [ 13,141. 

6.3. Noncompact structure groups 

We now wish to relax the assumption that the structure group be compact and let G be any 
connected Lie group. We will see that we can extend the construction of the induced Haar 
measure as well as the heat-kernel measures to this case, although there are now certain 
important subtleties. 

To begin with, the construction of the space d/6 given in [4] does not go through, 
since the Wilson loop functions are now unbounded and one cannot endow them with the 
structure of a P-algebra in a straightforward fashion. However, following Mourao and 
Marolf [21], we can still introduce the projective family (d,,G,,, pyy~)y,yr~ of analytic 
manifolds of Section 3. As in Section 3, the members A, of this family have the manifold 
structure of GE (where E is the number of edges in v) and are therefore no longer compact. 
Nonetheless, the projective limit is well defined and the notion of self-consistent families 
of measures &,),,e~ is still valid. Each such family enables us to integrate cylindrical 
functions. However, since the projective limit is no longer compact, the proof [6] that each 
self-consistent family defines a regular Bore1 measure p on the limit does not go through. 
Thus, in general, the family only provides us with cylindrical measures on the projective 
limit. Nonetheless, the construction of these measures is nontrivial since the consistency 
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conditions have to be solved and the result is both structurally interesting and practically 
useful. 

Let us first construct some natural measures on 2. In the previous constructions, we began 
with the Haar measure on G. However, since G is now noncompact, its Haar measure cannot 
be normalized and we need to use another measure as our starting point. Fix any probability 
measure dpl on G which is Ad(G)-invariant and has the following two properties: 

s fW) dfil W dpl (h) = s f(g)dpl(g) and dpl(g) = dF,(g-‘1 (107) 

G2 G 

for every f E C:(G) (the space of continuous functions on G with compact support). Then, 
the procedure introduced in [5] provides us with a family of measures (P~)~~L, each F,, 
being the product measure on A, = G E. In spite of the fact that A, are noncompact, results 
of [5] required to ensure the self-consistency of the family are still applicable. We thus have 
an integration theory on 2. The resulting cylindrical measure is again faithful and invariant 
under the induced action of Diff (M) . 

Another possibility is to use the Baez construction [ 131 which leads to a diffeomorphism 
invariant integration on d/G from almost any measure on G. The resulting cylindrical 
measures, however, fail to be faithful. 

A third possibility is to repeat the procedure of gluing measures on d, starting, however, 
from an appropriately generalized heat-kernel measure on G. Given a measure 1 on G, let 
us define an integral kernel, p via 

(Pr * f)(g) := 1 f(gh-‘) dl.L(h) . 

G 

(108) 

A l-parameter family of measures pt on G will be said to constitute a generalized heat- 
kernel measure if the resulting integral kernels pt satisfy the following conditions: 

or * ps *f = pr+s *f, pr *R,,f = R,a *f, pt ??kf = h * f 7 (10% 

where R and I denote, respectively, the right action of G in G and the inversion map 

ET++ g-’ , and where f E C!(G). 
Given an edge-metric 1 on M, we can now repeat the construction of the previous subsec- 

tion and obtain a self-consistent family of measures (P,,),,~L. Thus, for a graph y, define 
the following “generalized heat evolution” 

(Pr,y * fvM,) = 
s 

fywq’, . . . 1 a&‘) dps, @I) . . . dl-LsE PE), (110) 

where Si = I(ei)t and where we have set A, = (al, . . . , uE), B, = (bl, . . . , bE) using an 
identification d, = GE. It is then straightforward to establish the following result. 

Proposition 9. Thefamily of heat evolutions (110) is self-consistent, i.e., if f is a cylindrical 

function, f = [f,,]+_. = [fnlN, then 

[PLY, * fy,l- = 1Pr.n * f)&. (111) 
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Using the resulting heat evolution for 2 we can just define the corresponding heat kernel 
integral to be 

J = Pr * foe) (112) 

3 

as before. If the group G is compact, this formula defines a regular Bore1 measure on 2. In 
the general case, we only have a cylindrical measure. A case of special interest is when G 
is the complexification of a compact, connected Lie group. It is discussed in detail in [S]. 

7. Natural geometry on d/Q 

Let us begin by spelling out what we mean by “natural structures” on 2 and on d/G. 
A natural structure on 2 will be taken to be a structure which is invariant under the 

induced action of the automorphism group of the underlying bundle /3(M, G). (Note that all 

automorphisms are now included; not just the vertical ones.) In the context of the quotient 
d/G a natural structure will have to be invariant under the induced action of the group 
Diff(M) of diffeomorphisms on M. 

The action of Diff(M) on d/Q may be viewed as follows. Let @ E Diff(M). Given 
agraphy = [ei,..., Ed) choose any orientation of the edges and consider the graph 
Q(v) = {@(el), . . . , @(Ed)] with the corresponding orientation. Pick any trivialization of 
B(M, G) over the vertices of y and <p(v) and define 

@v : AylGy + h,,lGw,,~ q/ := A& 0 A,, (113) 

where A, is the group valued chart defined in (17). It is easy to see that the family of maps 
@,, defines uniquely a map 

- - 
3 : d/6 + d/9. 

This is the action of Diff (M) on d/B. 

(114) 

In this section we will introduce a natural contravariant, second rank, symmetric tensor 
field ku on d/P and, using it, define a natural second-order differential operator. In the 
conventional approaches, by contrast, the introduction of such Laplace-type operators on 
(completions of) d/6 always involve, to our knowledge, the use of a background metric 
on A4 (see, e.g. [ 121). 

7. I. Cometric tensors 

Let us suppose that we are given, at each point A, of d,, a real, bilinear, symmetric, 
contravariant tensor k, : 

(115) 
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for all graphs y, where /jAy denotes the cotangent space of A, at A,. Such a family, 

(ky)yE~, will be called a comettic tensor on 2 if it satisfies the following consistency 
condition: 

ky’(P;)/‘Oy A p;)/d$J> = k,(Oy A qJ)’ (116) 

for every c+, , uy E AAY (A,), whenever y’ ? Y. 

Example 10. Recall from the remark at the end of Section 6.1 that, given a path metric 
1, and an edge e, one can introduce on A, a contravariant metric I(e)k,, where ke is the 
contravariant metric induced on si, by a fixed Killing form on G. Then, given a graph y, 
A, = xeEy A, is equipped with the product contravariant metric 

k(l) ._ 
Y .- c l(e)ke. 

ew 

It is not hard to check that (k(t)) y yC~ is a cometric k(l) on 2. Notice, that if the edge metric 
vanishes for some edges eu, the cometric is degenerate but continues to be well defined. 

Given a cometric k = (ky)yEL and a differential l-form o = [$,I_ E St’(x), we define 
for each rr$, the vector field k, (2,) on A, determined by the condition that, for any l-form 
v on A,, 

dky(@,)) = k,(v, 0,) 

at every A, E A,. It is easy to see that the family of vector fields (k,,~(OYI))Y~zY =: k(0) 
defines a vector field on 2 in the sense of Section 4. Let us suppose that we are given a 
cometric tensor k and a l-form 0 on 2 both of which are c-invariant. Then so is the vector 
field k(0). Hence, we can apply the results of Section 5 to obtain the following proposition. 

Proposition 10. Suppose k is a G-invariant cometric tensor on 2 and 0 c L? 1 (d/Q). Then 
the vector$eld k(0) is compatible with the natural Haar volume form 110 on x 

Hence, assuming the necessary differentiability, k(0) has a well-defined divergence with 
respect to the Haar volume form /.~u on 2, div PO k(0) = [divk,($,)]-. Consequently, with 
every c-invariant cometric on 2 we may associate a second-order differential operator 

A(k) : Cy12(d/Q H Cyl’(d/O); A(&) f = divF,,[k(d f)] (117) 

with a well-defined action on the space of ~-invariant cylindrical functions. If k, is nonde- 
generate, ACk) is the Laplacian it defines. (In particular, the operator defined by the cometric 
k(t) via (117) is precisely the Laplacian constructed from the edge-metric 1 in Section 6.) 
Hence, for simplicity of notation, we will refer to A@) as the Laplace operator correspond- 
ing to k even in the degenerate case. 
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7.2. A natural cometric tensor 

We will now show that d/G admits a natural (nontrivial) cometric. Let us begin by fixing 
an invariant contravariant metric on the gauge group G (i.e., an invariant scalar product in 
the cotangent space at each point of G). This is the only “input” that is needed. The idea is 
to use this k to assign a scalar product k, to each vertex u of a graph y and set k, = c, k,. 

Given a vertex u, choose an orientation of y such that all the edges at u are outgoing. 
Use a group valued chart A,, (see (17)) to define for each edge e in y a map 

G + A, --f x+,def. (118) 

Through the corresponding pull-back map every o E AA, defines a l-form oe on G for 
every edge e. Let k, and keel be two bilinear forms in AA, defined by 

k,(pr, v) = k(&, ve), ke,‘(0, v) = k(o,, v,,) . (119) 

(Note that k, is as in the example in the last subsection.) Both, k, and keel are insensitive to 
a change of a group valued chart since the field k on G is left and right invariant. Now, for 
k, we set 

k, := ;cke +;zk,el, (120) 
L e A ee’ 

where the first sum is carried over all the edges passing through u and, in the second, e, e’ 
range through all the pairs of edges which form an analytic arc at u (i.e, such that e’ o e-’ 
is analytic at u). Finally, we define k, simply by summing over all the vertices u of y : 

k, := xk”. 
” 

(121) 

We then have the following proposition. 

Proposition 11. The family ko = (k,),,L is a natural cometric tensor on 2; ko is G- 
invariant, and defines a natural cometric on d/Q. 

The proof consists just of checking the consistency conditions and proceeds as the pre- 
vious proofs of this property. Note that consistency holds only because we have added the 
terms k e+. assigned to each pair of edges which constitute a single edge of a smaller graph. 
(Unfortunately, however, this is also the source of the potential degeneracy of ko.) The 
diffeomorphism invariance of ko is obvious. 

7.3. A natural Luplacian L 

We can now use the natural cometric to define a natural Laplacian. That is, using Proposi- 
tions 10 and 11 and Eq. (117), we can assign to ko the operator (a s AckO), Cy12(d/@). In 
this subsection, we will write out its detailed expression and discuss some of its properties. 
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Let us fix a group valued chart on A,. The operator A! representing a in C*(d,/B,) 
is given by the sum 

A; = CA”, (122) 
u 

where each A, will involve products of derivatives on the copies Sz, corresponding to edges 
incident at u. To calculate Au, we will orient y such that the edges at u are all outgoing. 
LetRi,i = I,..., n be a basis of left-invariant vector fields on G, 8’ the dual basis and let 
k’j = k(8’, t9j) denote the components of k in this basis. Let e be an edge with vertex u. 
Denote by R,i the vector field on A, corresponding to Ri via the group valued chart. Next, 
identify R,i with the vector field (0, . . . , 0, Rei, 0, . . (0) on A, = xetEydel. Then, the 
expression of A, reads 

A” = i C kii R,i Rej + l C k’j R,i R,,j , 
e ee’ 

(123) 

where the sums are as in the expression (120) of k,. 

The consistency of the family of operators (A;, Cyl*(d,/&)) defined by (122) and 
(123) is assured by Theorem 3. However, one can also verify the consistency directly from 
these two equations. Indeed, if a vertex u belongs to only two edges, say e and e’, which 
form an analytic arc (and are oriented to be outgoing), then 

Reify = -Reri.fy 

so that A,, = 0 at this vertex u. This ensures 

(124) 

A0 = A0 PYY” y’ Y’ (125) 

when y’ is obtained from y by splitting an edge. On the other hand, if y’ is constructed 
by adding an extra edge, say e”, to y then the projection kills every term containing Re”i. 
The remaining terms coincide with those of A,. Furthermore, in this argument, we need 
not restrict ourselves to $,-invariant functions. This shows that the vector field ko(df) is 
compatible with the natural volume form 110 on 2 for every f E Cyl*(&. Hence, the 
operator 

A0 : Cy1*(7i) H Cyl(& 

is also well defined. 

Aof = div&o(df)l (126) 

As in Section 6, the Laplace operator k can be used to define a semigroup of trans- 
formations pt* : Cyl($ + Cyl(x) such that ft := ~r*f solves the corresponding heat 
equation. In this case, pr* is given by the family (~~),,~r. of certain generalized heat kernels. 
The family and the transformations pr* coincide with those introduced in 181. In fact the 
constructions of this subsection were motivated directly by the results of [8]. 

We will conclude with two remarks. 
(1) If a vector field X on 2 is compatible with a volume form p, then so is Y = hX for 

any h E Cyl’(3i) (and div(Y) = h div(X) + X(h)). From this and from the existence 
of the operator (126), we have the following proposition. 
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Proposition 12. For every (di$erentiable) 1Tfom o E sZ’(& the vectorjeld ko(@) 
is compatible with the Haar volume form ~0. 

The map 

d*: d(x) H a’(& dV = div,,M8)1 

can be thought of as a coderivative defined on 2 by the geometry (ku, ~0). It is possible 
to extend d* to act on P(~). 
Consider the special case when the structure group G is SU (2) and M is an oriented 
three-dimensional manifold. There exists on 2 a natural third-order differential op- 
erator, (q, Cy13(z)) defined by a consistent family of operators (qY, C3(d,)),,L on 
C3 (.A,,). To obtain qv, we begin as before, by defining operators qV associated with the 
vertices of y . Given a vertex u of a graph y and a triplet of edges (e, e’, e”) coincident 
on this vertex, let c (e, e’, e”) be 0 whenever their tangents at u are linearly dependent, 
and f 1 otherwise, depending on the orientation of the ordered triplet. To the vertex u, 
let us assign an operator acting on C3(d,) as 

4u = & PH(Ri, Rjy Rk) c c(e, e’, e”) R,iR,ljRe”k, 
e,e’.e” 

(127) 

where we use the same orientation, notation and group valued charts as in (123), and 
where the summation ranges over all the ordered triplets (e, e’, e”) of edges incident 
at u. In terms of these operators, we can now define qy . Set 

qv := c 14”P2 (128) 
” 

where u runs through all the vertices of y (at which three or more vertices have to be 
incident to contribute). We then have the following proposition. 

Proposition 13. The family (qV, C3(d,)),,~ of operators is self-consistent. The 
operator (q, Cy13(&) is natural, g-invariant and defines a natural operator on 

W3 (d/B). 

This operator is closely related to the total volume (of M) operator of Riemannian 
quantum gravity [22,9]. The detailed derivation of this operator as well as the local 
area and volume operators and the analytic formulae for the Hamiltonian operators 
will be discussed in a forthcoming paper [ 10,201. 

8. Discussion 

In more conventional approaches to gauge theories, one begins with d/6, introduces 
suitable Sobolev norms and completes it to obtain a Hilbert-Riemann manifold (see, e.g., 
[ 121). However, since the Sobolev norms use a metric on the underlying manifold M the 
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resulting Hilbert-Riemann geometry fails to be invariant with respect to induced action of 
Diff(M). Hence, to deal with diffeomorphism invariant theories such as general relativity, 
a new approach is needed, an approach in which the basic constructions are not tied to a 
background structure on M. Such a framework was introduced in [4,5] and extended in 
[ 13,6] to a theory of diffeomorphism invariant measures. Here, the basic assumption is 
that the algebra of Wilson loop variables should be faithfully represented in the quantum 
theory and it leads one directly to the completion d/Q. Neither the construction of d/G 
nor the introduction of a large family of measures on it requires a metric on M. This is a key 
strength of the approach. The physical concepts it leads to are also significantly different 
from the perturbative treatments of the more conventional approaches: loopy excitations and 
flux lines are brought to forefront rather than wave-like excitations and notion of particles. 
The framework has been successful in dealing with Yang-Mills theory in two space-time 
dimensions [7] without a significant new input. This success may, however, be primarily 
due to the fact that in two dimensions, the Yang-Mills theory is invariant under all volume 
preserving diffeomorphisms. In higher dimensions, it remains to be seen whether the Yang- 
Mills theory admits interesting phases in which the algebra of the Wilson loop operators is 
faithfully represented. If it does, they would be captured on d/&T, e.g., through Laplacians 
and measures which depend on an edge-metric 1 (e), which itself would be constructed from 
a metric on M. We expect, however, that the key applications of the framework would be 
to diffeomorphism invariant theories. 

A central mathematical problem for such theories is that of developing differential geom- 
etry on the quantum configuration space, again without reference to a background structure 
on M. This task was undertaken in the last four sections. In particular, we have shown that 
although d/O initially arises only as a compact Hausdorff topological space, because it 
can be recovered as a projective limit of a family of analytic manifolds, using algebraic 
methods, one can induce on it a rich geometric structure. There are strong indications that 
this structure will play a key role in nonperturbative quantum gravity. Specifically, it appears 
that results of this paper can be used to give a rigorous meaning to various operators that 
have played an important role in various heuristic treatments [2,22]. 

We will conclude by indicating how the results of this paper fit in the general picture 
provided by the.available literature on the structure of d/Q. 

As mentioned in Section 1, d/G first arose as the Gel’fand spectrum of an Abelian C*- 
algebra ‘HA constructed from the so-called Wilson loop functions on the space d/G of 
smooth connections modulo gauge transformations [4]. A complete and useful characteri- 
zation of this space [5] can be summarized as follows. Fix a base point xu on the underlying 
manifold M and consider piecewise analytic, closed loops beginning and ending at no. 
Consider two loops as equivalent if the holonomies of any smooth connection around them, 
evaluated at x0, are equal. Call each equivalence class a hoop (a holonomic-loop). The 
space 714 of hoops has the structure of a group, which is called the hoop group. (It turns 
out that in the piecewise analytic case, 1-IQ is largely independent of the structure group G. 
More precisely, there are only two hoop groups; one for the case when G is Abelian and the 
other when it is non-Abelian.) The characterization of d/8 can now be stated quite simply, 
in purely algebraic terms: m is the space of all homomorphisms from 3-1G to G. Using 
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subgroups of ‘HG which are generated by a finite number of independent hoops, one can 
then introduce the notion of cylindrical functions on d/Q. (The C*-algebra of all continuous 
cylindrical functions turns out to be isomorphic with the holonomy C*-algebra with which 
we began.) Using these functions, one can define cylindrical measures. The Haar measure 
on G provides a natural cylindrical measure, which can be then shown to be a regular Bore1 
measure on d/Q [5]. 

Marolf and Mom50 [21] obtained another characterization of d/E: using various tech- 
niques employed in [5], they introduced a projective family of compact Hausdorlf spaces 
and showed that its projective limit is naturally isomorphic to d/O. This result influenced 
the further developments significantly. Indeed, as we saw in this paper, it is a projective 
limit picture of d/G that naturally leads to differential geometry. The label set of the family 
they used is, however, different from the one we used in this paper: it is the set of all finitely 
generated subgroups of the hoop group. At a sufficiently general level, the two families 
are equivalent, the subgroups of the hoop group being recovered in the second picture as 
the fundamental groups of graphs. For a discussion of measures and integration theory, 
the family labelled by subgroups of the hoop group is just as convenient as the one we 
used. Indeed, it was employed successfully to investigate the support of the measure ~0 in 
[21] and to considerably simplify the proofs of the two characterization of d/G, discussed 
above, in 161. For introducing differential geometry, however, this projective family appears 
to be less convenient. 

The shift from hoops to graphs was suggested and explored by Baez [ 13,141. Indepen- 
dently, the graphs were introduced to analyze the so-called “strip-operators” (which serve 
as gauge-invariant momentum operators) as a consistent family of vector fields in [ 191. Baez 
also pointed out that, even while dealing with gauge-invariant structures, it is technically 
more convenient to work “upstairs”, in the full space of connections, rather than in the space 
of gauge equivalent ones. Both these shifts of emphasis led to key simplifications in the 
various constructions of this paper. 

Baez’s main motivation, however, came from integration theory, His main result was 
two-fold: he discovered powerful theorems that simplify the tusk of obtaining measures 
and, using them, obtained a large class of diffeomorphism invariant measures on d/B. In 
his discussion, it turned out to be convenient to deemphasize d/O itself and focus instead on 
the space A of smooth connections. In particular, he regarded measures on 3i primarily as 
defining “generalized measures” on A. At first this change of focus appears to simplify the 
matters considerably since one seems to be dealing only with the familiar space of smooth 
connections. One may thus be tempted to ignore d/6 altogether! 

The impression is, however, misleading for a number of reasons. First, as Marolf and 
Mourgo [21] have shown, the support of the natural measure 10 is concentrated precisely 
on 2-d; the space A is contained in a set of zero pa-measure. The situation is likely to be 
the same for other interesting measures on d/B. Thus, the extension from A to 2 is not 
an irrelevant technicality. Second, without recourse to 2, it is difficult to have a control on 
just how general the class of “generalized measures” on A is. Is it perhaps “too general” 
to be relevant to physics? A degree of control comes precisely from the fact that this class 
corresponds to regular Bore1 measures on 2. One can thus rephrase the question of relevance 
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of these measures in more manageable terms: Is 2 “too large” to be physically useful and 
mathematically interesting? We saw in this paper that, with this rephrasing, the question 
can be analyzed quite effectively. The answer turned out to be in the negative; although 2 is 
very big, it is small enough to admit a rich geometry. Finally, all our geometrical structures 
naturally reside on the projective limit 2 of our family of compact analytic manifolds. It 
would have been difficult and awkward to analyze them directly as generalized structures 
on A. Thus, there is no easy way out of making the completions 2 and d/Q. 

To summarize, for diffeomorphism invariant theories, there is no easy substitute for the 
extended spaces 2 and d/G; one has to learn to deal directly with quantum configuration 
spaces. Fortunately, this task is made manageable because there are three characterizations 
of d/6: One as a Gel’fand spectrum of an Abelian @*-algebra and two as projective limits. 
The three ways of constructing d/B are complementary, and together they show that d/G 
has a surprisingly rich structure. In particular, differential geometry developed in this paper 
makes it feasible to use d/G to analyze concrete mathematical problems of diffeomorphism 
invariant theories. 
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